
Pasquale Dario Serpico (Annecy, France) 
 Fermi Symposium, Baltimore - Oct. 18, 2018

Dark matter constraints from dwarf galaxies: 
a data-driven analysis

based on JCAP 10 (2018) 029 [1803.05508];
in collaboration with Francesca Calore & Bryan Zaldivar



satellites of Milky Way with high DM/baryon content, 1 to 3 orders of magnitude higher than the MW. 
Almost ideal Signal/Noise, even better if stacked!

Signal depends on distance & volume average of DM 
density2,  (so-called J-factors). Can probe thermal s-
wave relics annihilating into b’s up to ~ 100 GeV

A primary WIMP DM target in 𝛾-rays: Dwarf Spheroidals

 M. Ackermann et al. [Fermi-
LAT],   PRL 115, 231301 
(2015)  [1503.02641]



Current Fermi-LAT’s procedure (outsider’s view!)

✓independent determination of background in a 15ºx15º region around each dwarf
✓predefined background models (diffuse and isotropic) where only normalization is fitted

• new spatially-dependent contributions (unresolved sources, alternative diffusion mechanisms) 
may provide unequal performances in different regions of the sky 

• no guarantee that background is consistently determined from one region to another
• somewhat arbitrary choice of background window 
• estimation of (theoretical) systematic due to background modeling errors is hard or unclear

Points to improve:  

On current assumptions/procedure

✓dSphs assumed without intrinsic background,  expected to be one to several o.o.m. below 
Fermi-LAT threshold, see 

M. Winter et al. Astrophys. J.  832, no. 1, L6 (2016)  [1607.06390]

✓Still affected by “accidental” background due to line of sight emissions (diffuse Galactic, 
extended Galactic sources, and both Gal. and extra-gal. point-like sources)



Some more “data driven” alternatives in the literature, like 
A. Geringer-Sameth and S. M. Koushiappas,   PRL 107, 241303 (2011)  [1108.2914]  

M. N. Mazziotta et al.  Astropart.  Phys. 37, 26 (2012) [1203.6731]

• somewhat arbitrary choice of background window
• all points within it “weighted equally”
• hard to evaluate how performing the method is
• no clear indications of paths for improvements

Still:

Alternatives

F. Calore, P. D. Serpico and B. Zaldivar, “Dark matter constraints from dwarf 
galaxies: a data-driven analysis,’' JCAP 10 (2018) 029 [1803.05508]

In 

we propose a data-driven approach, agnostic about the 
(astro)physics underlying the background, tackling the above issues 

This allows us to address the question of the robustness of Fermi-LAT 
dSphs results against (implicit or explicit) assumptions on the background



A preliminary comment
 Often, machine learning applied to deterministic problems (e.g. classification):

The goal will be rather to “optimize” the estimate of the background PDF 
(non-deterministic problem)!

Our problem is different, since we expect that the background towards a given 
direction can be (at best) described in a statistical sense. 

Would not very be effective to directly interpolate the (noisy) background in the sky

Cat 
or 

cappuccino?

For details:  M.-A. Fardin “On the Rheology of Cats”, Rheol. Bull. 83, 16 (2014) [IgNobel prize for physics 2017]



A sketch of the procedure

to reduce chances of “hidden” systematics 
further cut the background by sampling it 

according to the smoothed distribution of dSph

turns out not to be very relevant, since the 
optimal estimator will be relatively local

✓ Step 1: remove dSphs, known pointlike and 
diffuse sources to build a “background sample”

obtained with Kernel Density Estimation, python scikit-learn package

N≃9400 void regions remain



✓ Step 1: remove dSphs, known pointlike and 
diffuse sources to build a “background sample”

A sketch of the procedure

spatial location kernel, depending on 
the smooting parameter σ

photon count kernel, depending on 
the smooting parameter ς

In particular, we take a Gaussian for K and a log-normal for g, but this choice is not essential since the convergence 
to the true PDF for large N is assured under weak and general hypotheses of continuity and smoothness 

smooting can be “local” or “global”, the 
latter chosen in the following for simplicity

ℱ̂( ⃗x , y) =
1
N

N

∑
i=1

Kσ( ⃗x − ⃗x i)gς(y − yi)

✓ Step II: build global PDF estimator based only on data 
(parameterized PDF according to E. Parzen ’61, D. Specht 
’88,’90,’91, well-known theorems in statistics/Machine Learning 
community proving convergence to “true” PDF)

re-sampled according to smoothed dSph distribution



✓ Step III: maximize the (global) likelihood 
on the training background sample wrt the 
smoothing parameters

Optimization

PDF at a typical position

In particular, low     means low variance but large 
“bias” (comb-like PDF)

ς

ln ℱ̂tot(σ, ς) =
N

∑
i=1

ln
1

N − 1

N−1

∑
j≠i

Kσ( ⃗x i, ⃗x j)gς(bi, bj)

{σ*, ς*} = argmax ln ℱ̂tot(σ, ς) ≈ {1.58, 0.16}

The red curve shows the “optimal” compromise

(when varying a smoothing parameter)

Large    means high-variance (broadened PDF)ς



✓ Step IV: The PDF thus optimized on the “rest of the sky” can be used to evaluate the 
background PDF at the dwarf position, or if one wishes its statistical moments, e.g.

Evaluation

(beware, the PDF is far from Gaussian!)

✓ Step V: We construct the likelihood for dwarf d, energy bin e, accounting for Poisson 
statistics of the counts (including both background and signal), the PDF of the 
astrophysical inferred J-factors, and the Background PDF 

̂ln 𝖻 =
∑n

i=1 Ki ln bi

∑n
i=1 Ki

̂Var(ln b)σ, ς = ς2 +
∑n

i=1 Ki(ln bi)2

∑n
i=1 Ki

− (
∑n

i=1 Ki ln bi

∑n
i=1 Ki )

2

ℒd,e(λd,e, log10 Jd, ln bd,e) =
λcd,e

d,e e−λd,e

cd,e!
𝒩(log10 Jd)ℬ(ln bd,e)

λd,e = λd,e(⟨σv⟩, mDM, log10 Jd, ln bd,e) = 10log10 Jd ⟨σv⟩ fd,e(mDM) + eln bd,e

from here on, standard “Fermi-like” (stacking and) profile likelihood method, as described in

M. Ackermann et al.,  Phys. Rev. D 89, 042001 (2014) [arXiv:1310.0828]

 just extended to profiling over the J-factor and background PDF



Sample of 25 dSphs, all of which have J-factors estimated from spectroscopic measurements
J-factors within circular regions of 0.5º,  with log-normal distribution

Our choice of dSph & J-factors

A. Albert et al. [Fermi-LAT and DES Collaborations], Astrophys. J. 834, no. 2, 110 (2017) [1611.03184]

𝒩(log10 Jd) =
1

2πσJ
d

exp −
log10 Jd − log10 Jd

2σJ
d

2

19/25 taken from Table I of 

A. Geringer-Sameth, S. M. Koushiappas and M. Walker,  Astrophys. J.  801, no. 2, 74 (2015) [1408.0002]

in turn based on the analysis

5/25 (Horologium I, Hydra II, Pisces II, Willman I and Grus I) from 

N. W. Evans, J. L. Sanders and A. Geringer-Sameth,  
“Simple J-Factors and D-Factors for Indirect Dark Matter Detection,’' Phys. Rev. D 93, no. 10, 103512 (2016) [1604.05599]

1/25 (Tucana II) from 

M. Walker et al.  Astrophys. J.  819, 53 (2016) [1511.06296]



Energy dependence: simplification

The counts in different energy bins (same 
location) are strongly correlated, so that the 
PDF of their ratios is much narrower than 

the single bin PDF

The computations speed up significantly if we assume that the background E-
distribution is fixed, and only the overall number is subject to profiling.

not a limitation of the method, just a useful trick to reduce the # of distributions to profile over.
Real bounds should be actually a little bit weaker because of this neglected effect…



Main results
✓If we do not profile over background PDF, we improve over previously proposed data-driven 

techniques and obtain results comparable to Fermi-LAT ones at small DM masses

(At large masses, lower sensitivity wrt Fermi, but we have all high-E data in a single bin to comply 
with our choice of “log” background estimator for comparable performance all-over the sky; loss 
of sensitivity expected and results more similar to “E-integrated” analyses)

✓When background uncertainty accounted for, bounds degrade up to a factor 2! Impact on
cross-checks and multimessenger studies (Gal. Center Excess, antiproton excess, etc.)

b b
_



‣ We proposed an alternative, data-driven method to analyse Fermi-LAT results to derive a bound 
on DM from dSphs, to test the robustness of the bound wrt background assumptions and simplify 
the estimate of the theoretical error on the background modeling.

Summary, and the road ahead

‣ The results obtained are comparable to Fermi-LAT ones when performing a similar analysis. 
However, profiling over the background distribution weakens the bounds up to a factor 2. This 
effect should be thus taken into account when assessing more precisely the bounds from dSphs.

‣ Our goal was mainly methodological. Room remains for improvements (green ongoing)

• a local (vs. global) optimization for the kernel parameters, σ, 𝞻 and then inter/extrapolate those
• account for more realistic J-factor PDF
• test different kernels  
• introduce more kernel optimization parameters
• account for energy-bin dependent background PDFs
• “hybrid” strategies, including some theory prior on the description of the background?
• apply to non-DM problems
• (you name it!)

Thank you!



Backup



Technical details on how the bounds are obtained

The log likelihood quantity gives the test statistics (TS) with maximum statistical power

If data are distributed according toℒ(θ1, . . . , θN) ,  the maximum log likelihood ratio TS

Neyman-Pearson lemma

Wilks theorem

 where 𝜃i* are max likelihood 
estimators of the parameters, i.e. 

(appropriateness checked in M. Ackermann et al. [Fermi-LAT],   PRL 115, 231301 (2015))

parameters of interest “nuisance” par. (profiling)

(θ*k+1, . . . , θ*N) = argmax
θk+1,...,θN

{ℒ(θ1, . . . , θk, θk+1, . . . , θN)}

tends to a 𝝌2 distribution with k degrees of freedom, provided that 𝜃i* are normally distributed

λ(θ1, θ2, . . . , θk) = − 2 ln
ℒ(θ1, . . . , θk, θ*k+1, . . . , θ*N)

ℒ(θ*1 , . . . , θ*N)

for each mass, 95% CL of <σ v> estimated from standard 𝝌2 distribution intervals



Numerical results

A few objects dominate the combined limit (*)
Background and counts agree within “~2 sigmas” (background PDF non-
gaussian, a bit better approximated by log-normal… still not very well!)



Example for single dwarfs

varying the background allows for a larger DM signal, lowering the bounds



Example for multiple dwarfs

The stacking usually improves the bound, but marginal worsening possible if excesses are present…

The excesses “go away” (globally speaking) once profiling over background; the stacked bound is better
than any single one, but worse than the one obtained by profiling over J-only.


